

The new high ground

Leveraging space investments
to drive national growth

Table of content

01	Foreword	03
02	Defense spending lifts public space investment	04
03	Private investments recover driven by corporate and VC funding	08
04	How are space investments contributing to national growth	15
05	Measuring the success of space investments	19
06	About KPMG Middle East	21
07	References	22

01

Foreword

“The only way to discover the limits of the possible is to go beyond them into the impossible,” said Arthur C. Clarke, renowned science fiction author and the first to propose geostationary satellite communications in 1945, capturing a mindset that continues to shape the space sector today. What was once the domain of state-led exploration is now a fast-evolving, innovation-driven economy spanning new launch solutions, satellites, orbital logistics, lunar infrastructure, and creative downstream applications.

While engineering and technological innovation chart the course, it is a braided capital and funding stack that enables progress, bridging the gap from concept to deployment and accelerating real-world impact. From sovereign space budgets and strategic government grants to venture funding, corporate partnerships, and sovereign wealth interventions, each plays a critical role in turning space ambition into scalable enterprise.

In this paper, we set out to assess the global state of affairs in space financing, where it is initiated from, how it is allocated, and what we believe to be the spin-off effects for the wider economy.

Arjun Sreekumar

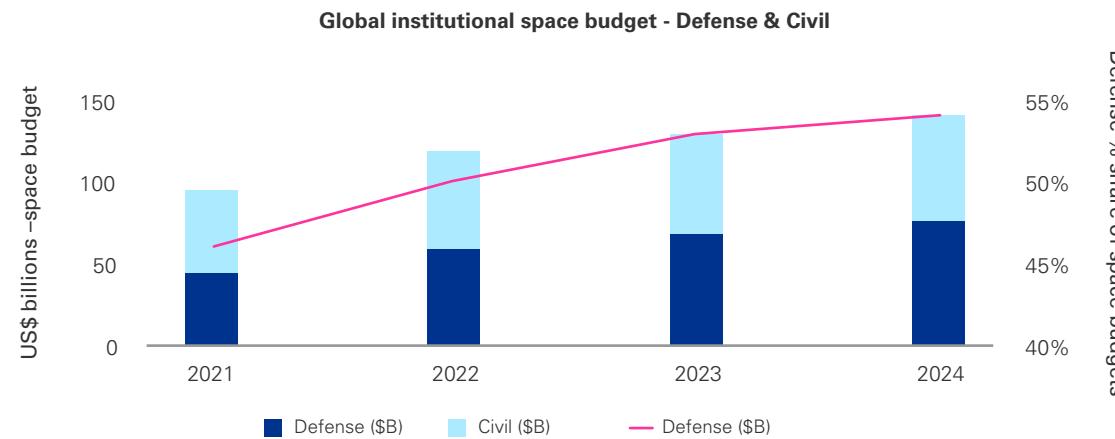
Associate Director
Defense, Space and Aerospace
KPMG Middle East

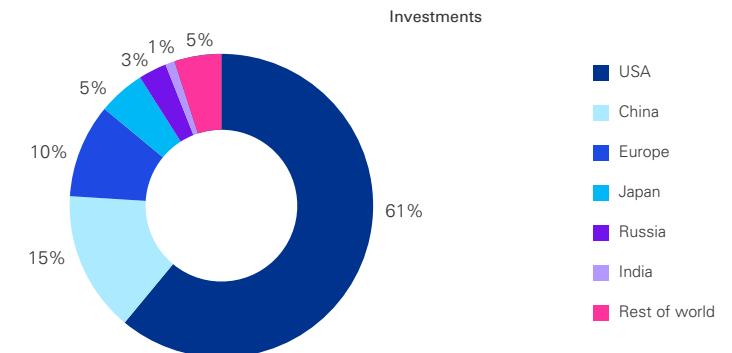
02

Defense spending lifts public space investment

Global government space spending surged to a record US\$140 billion in 2024, fueled by a resurgence of defense-oriented programs. The defense segment of institutional space budgets climbed from under 50 percent (around 44 percent in 2021) to over 54 percent by 2024. Defense spending grew about 18 percent from 2022 to 2023, versus 7 percent growth in civil budgets, causing military space outlays to overtake civil space in 2023. This trend is fueled largely by North America and Asia, the United States (US) and China in particular. US national security space investment rose to US\$49.5 billion in 2024 (nearly 56 percent above its 2020 level), and China has steadily expanded its military space programs (now the second-largest budget).

Table 1: Investment types in space


Type of investment	Investing organization	Approximate amount of investment (US\$)	Description
Government funding	United States Space Force	33.7B	Requested (FY 2025) funding to strengthen secure satellite communications (US\$4.2B) and resilient space architectures.
	Missile Defense Agency (US)	175B (proposed)	Proposed (2025) a space-based missile shield to develop orbital interception and global surveillance capabilities.
Venture capital	MetaVC Partners (US)	5M	Invested (2025 seed) in Kapta Space to develop electronically steerable radar-imaging satellites for earth observation and defense.
	Marubeni Corporation (Japan) & co investors	166M	Led (2024 Series C) D-Orbit's round to scale in-orbit servicing and debris-remediation operations.
Corporate investment	Toyota (Japan)	44.4M	Invested (2025) in Interstellar Technologies to scale rocket production and launch infrastructure.
	Amazon	10B+	Committed (2024–25) to Project Kuiper to build satellite manufacturing and launch infrastructure and deploy a global LEO broadband network.
Angel investors	Seafund (India)	0.66M	Led (2025 pre-seed) TakeMe2Space's round to build in-space AI-lab infrastructure.
	Sunfish Partners (Germany)	1.9M	Led (2024 pre-seed) Zaitra's round to develop AI-enabled satellite autonomy systems.
Other instrument, i.e. sovereign wealth funds, export credit agency (ECAs), development finance institutions (DFIs)	European Investment Bank (EIB)	330M	Provided (2024) a loan via BGK to finance two national high-resolution Earth-observation satellites (dual-use).
	NATO Innovation Fund (multi-sovereign)	10M	Led (2025 seed) Kreios Space's round to advance VLEO/ABEP propulsion for durable very low orbit satellites.
Public private partnership (PPP)	ESA and Airbus Defense & Space	600M	ESA's Eutelsat Quantum communications satellite was co-developed through a PPP with Airbus, using a reconfigurable payload model that supports dynamic mission flexibility. ESA funded development; Airbus handled manufacturing and delivery.
	Australian Space Agency, Optus, Inovor Technologies, and others	50M	Consortium (public + private + academic) to build and launch an Australian owned low Earth orbit satellite by 2028, led by Optus and Inovor, backed by government programs.


Originally funded solely by governments, the space sector today draws on this diverse spectrum of capital, blending public and private investments. A closer analysis of these investments, and the strategic objectives behind them reveal critical trends shaping the trajectory of space funding today.

European spending, by contrast, remains predominantly civil (~85 percent civil in 2023), but even Europe and Asia are ramping up defense-oriented projects amid regional conflicts and a push for sovereign space capabilities. The Middle East and South America contribute smaller shares, yet are launching new initiatives to build indigenous defense space capacity.

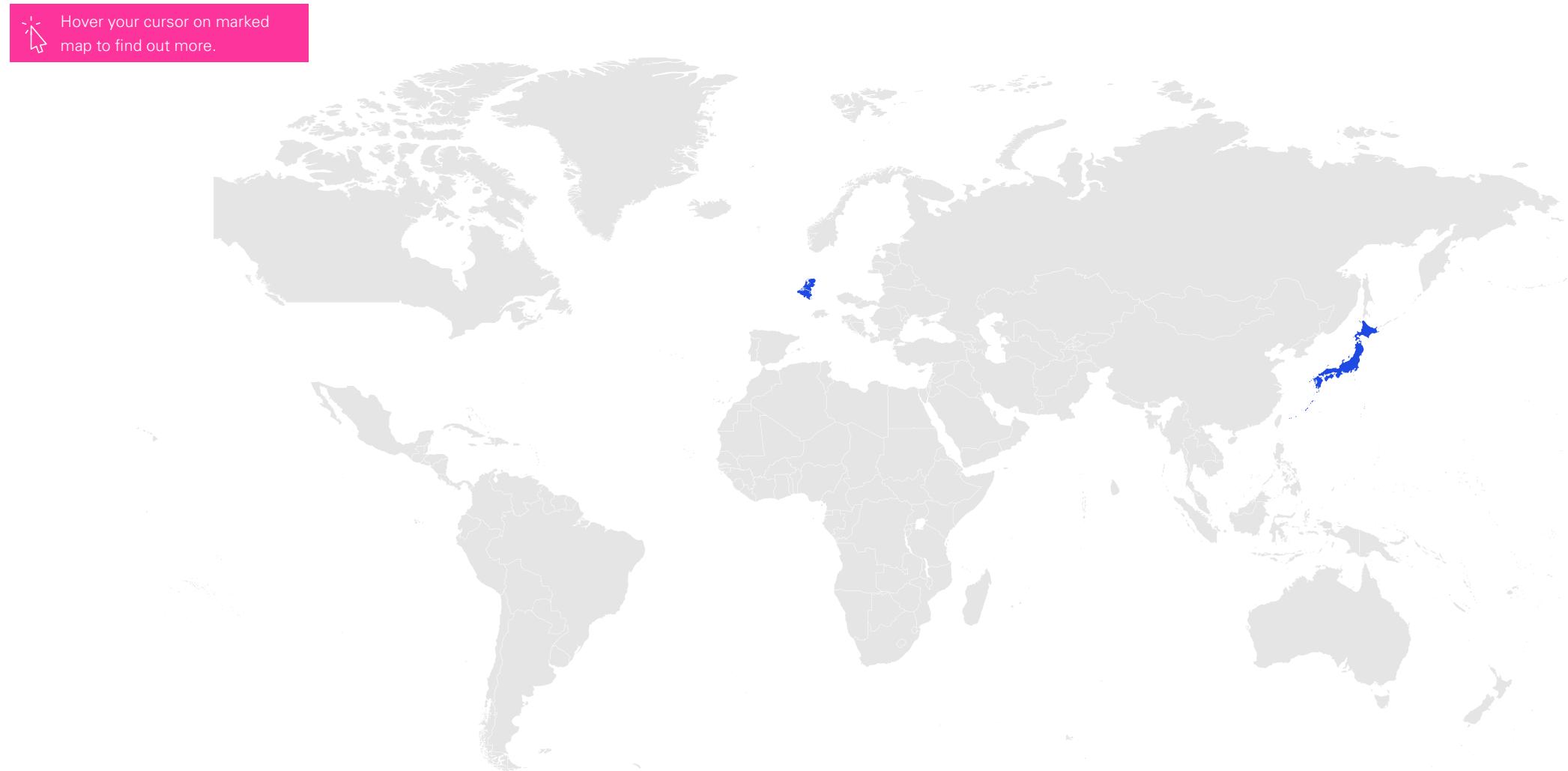
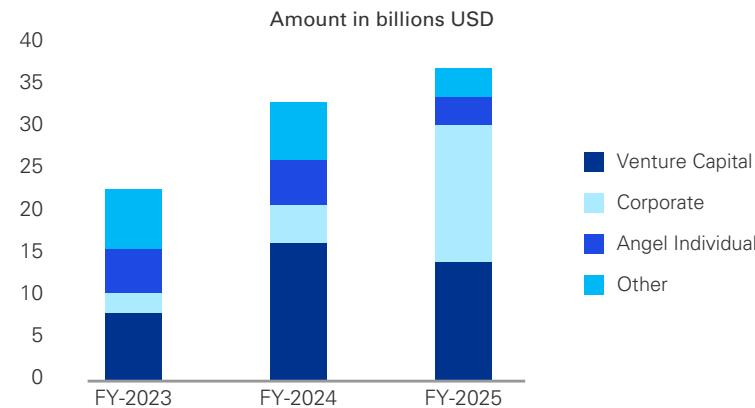
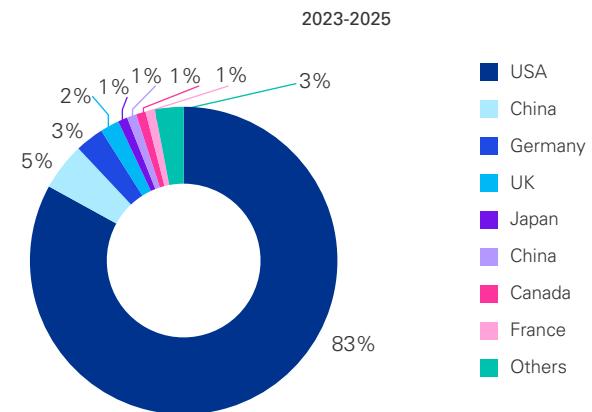

Figure 1: Global institutional space budgets, civil and defense, 2020-2024 (ESA Report on Space Economy, 2025)

Figure 2: Distribution of institutional space budgets in 2024 (civil and defense)


Figure 3: Selected defense and security-oriented space programs


03

Private investments recover driven by corporate and VC funding

After 2022, when the era of special purpose acquisition vehicles (SPACs) reached its peak, private capital in space shifted toward dual-use and defense-aligned infrastructure, reinforcing public investment trends. The 2023–2025 period saw venture and corporate funding converge around launch systems, satellite manufacturing, and geospatial intelligence applications tied to national security programs.

Figure 4: Space funding 2023-2025 per category

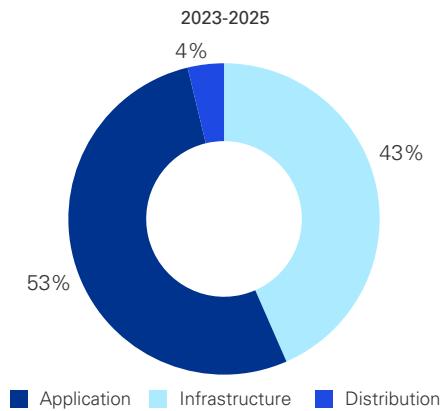
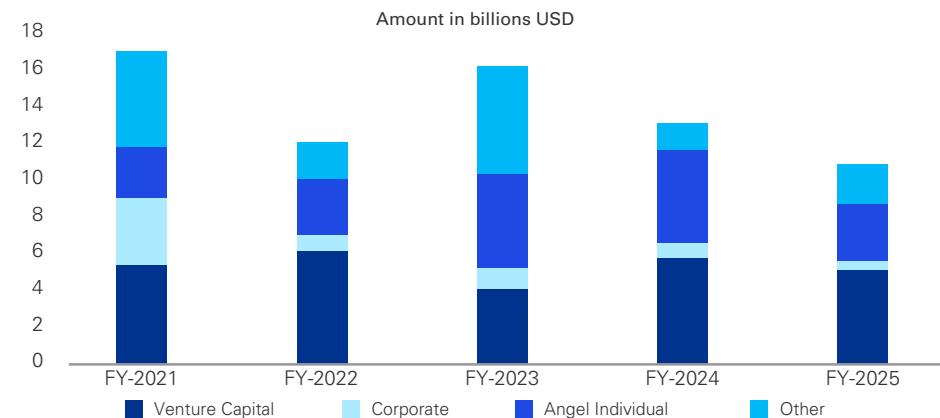

Applications integrating AI and geospatial intelligence (GEOINT) have become dominant investment themes, growing from roughly US\$1 billion in 2020 to more than US\$21 billion by Q3 2025. This reflects a strategic convergence between AI, space data, and defense analytics. Launch and satellite infrastructure remain capital-intensive backbones, but the application layer increasingly drives valuation and national interest.

Figure 5: Space funding 2023-2025 per country

By 2023–2025, the US captured 80–85 percent of total private space capital, reflecting both the maturity of US dual-use markets and the dominance of SpaceX-led launch and broadband infrastructure. China maintained a stable but narrower share (~5 percent), with capital flowing into reusable launch vehicles and mass-produced constellation hardware. Europe's share fragmented, with Germany and the UK emerging as the key centers for manufacturing, autonomy, and defense-aligned software. Japan, India, and Canada saw meaningful early-stage momentum, especially in small launch, lunar robotics, and earth observation (EO) data processing.

Figure 6: Space funding 2023-2025 per investment cycle

From 2021 to Q3 2025, the private space market transitioned from a broad, hype-driven consumer era to a disciplined, milestone-based investment cycle.


Infrastructure evolved into a capital-intensive backbone – fewer, larger rounds backing proven players such as SpaceX, Relativity, Rocket Lab, Astranis, Galactic Energy, Impulse, Varda, and Momentus. Investors prioritized execution, revenue visibility, and ties to procurement pipelines over speculative growth stories.

Meanwhile, applications underwent the strongest revaluation. The rise of AI, GEOINT and physical AI platforms (planetary-scale models, edge compute, and real-world data embeddings) drove explosive growth: from roughly US\$1 billion in 2020 to US\$21.6 billion by the third quarter of 2025 – making this layer the dominant source of strategic deal flow in the 2023–25 window.

Layer 1: Infrastructure funding

From exuberant investment wave in 2021 to a more disciplined cycle in 2025, space infrastructure funding has evolved from speculative bets to focused, milestone-driven deployment. Venture capital remains the core engine of deal flow, but corporate, sovereign, and government-backed capital now play a growing role in scaling strategic programs and program-of-record work. Over the past three years, global infrastructure funding has stabilized at high levels. Space IQ reports US\$14.4 billion invested across about 216 companies in the trailing 12 months, with Q3 2025 marking a five-quarter high of \$4.4 billion—dominated by satellite manufacturing, heavy launch, and defense-aligned platforms.


Figure 7: Funding in infrastructure 2021-2025

Investor composition shifted in three clear ways:

- VC consolidation and larger round sizes.** Early-stage rounds, especially Seed and Series A, have grown materially as investors back fewer but higher-confidence ventures with clearer government or defense linkages.
- Strategic and public capital integration.** Government procurement, sovereign funds, and corporate balance sheets increasingly bridge long-lead hardware development.
- Founder-led and sovereign capital resurgence.** Large founders and national investors (e.g., the Bezos-funded Blue Origin, or Gulf-backed heavy-lift ventures) have become critical backers of capital-intensive infrastructure.

Figure 8: Infrastructure investment per country 2023-2025

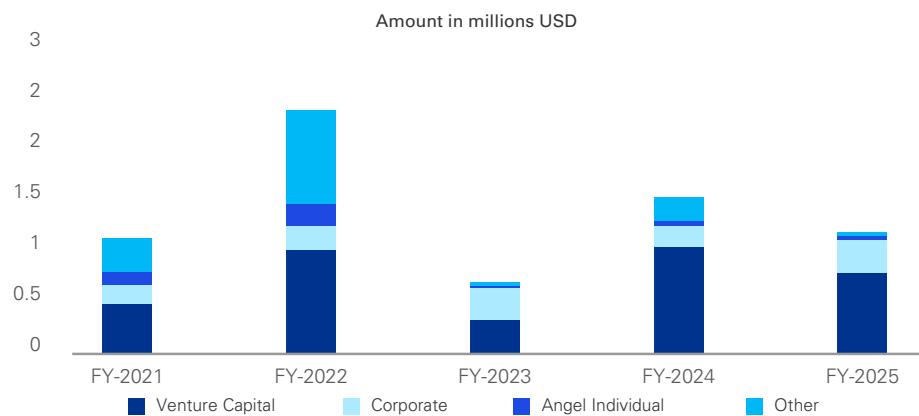
North America dominates with 76% of global infrastructure investment, led by Blue Origin, Maxar, AST SpaceMobile, and SpaceX – together accounting for nearly 60 percent of the US total. China (10 percent) follows, driven by state funding for reusable launch and small-satellite manufacturing, with Galactic Energy and Geospace at the forefront.

Europe's 8 percent share is anchored by France and Germany, focusing on satellite production, in-orbit servicing, and defense-oriented R&D supported by ESA and private investors. Japan (2 percent) advances through hybrid public-private models like ispace and Astroscale, while the UK (1 percent) retains strength in propulsion and defense partnerships. The remaining 6 percent, led by India, South Korea, and Luxembourg, reflects early-stage dynamism and cross-border collaboration.

Table 2: VC funding in infrastructure

Company	Funding round	Amount	Year	Focus
SpaceX	Private Equity/Venture (2021)	US \$1.16 billion	2021	Launch vehicle and satellite-factory scale-up (Starship, Starlink).
Relativity Space	Series C	US \$650 million	2021	3D-printed heavy-lift launch vehicle infrastructure (Terran R).
Astranis	Series D	US \$200 million	2024	Micro-GEO communications satellite infrastructure (Omega constellation).
Impulse Space	Series C	US \$300 million	2025	In-space mobility/tug infrastructure for satellite deployment and orbit transfers.
Varda Space Industries	Series B	US \$90 million	2024	In-space manufacturing infrastructure (microgravity pharmaceuticals).

Investment in space infrastructure has increasingly gravitated toward foundational capabilities – launch vehicles, in-orbit manufacturing, satellite constellations, and orbital transport services. Defense remains the central driver as governments and investors align resilient, interoperable architectures like Golden Dome and allied surveillance networks.


Since 2009, the satellite segment has led all infrastructure deal activity, representing over 56 percent of rounds. Satellite manufacturing, small launch, and GEOINT infrastructure together contribute about 61% percent of total deal volume. The trend toward larger, more focused rounds has culminated in landmark events such as Cambridge Aerospace's US\$100 million seed round in 2025—the largest in UK history for a defense-space company.

Layer 2 – Distribution funding

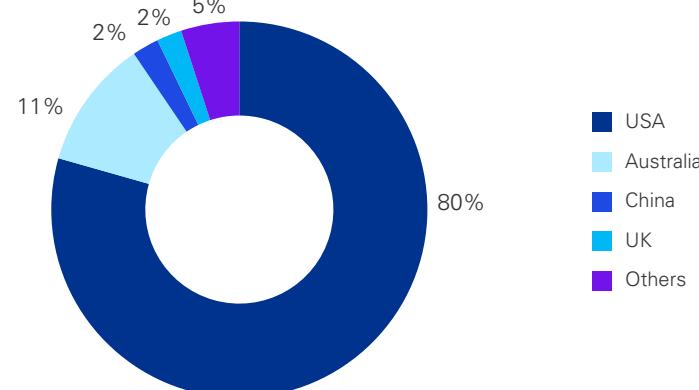
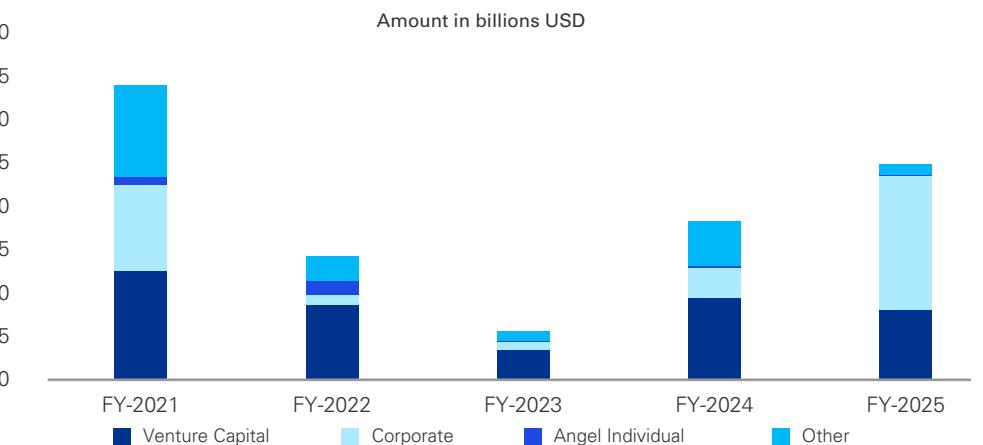

Investment in distribution remains smaller in absolute terms compared to Infrastructure and Applications, but it has become far more focused and strategically important. Funding rounds have grown in size, with 2024–2025 seeing concentrated capital flows into fewer, high-conviction companies. In Q3 2025 alone, US\$300 million was raised across eight deals, an indicator of investor preference for scale and defensible technology rather than breadth.

Figure 9: Funding in distribution 2021-2025

Figure 10: Distribution investment per country 2023-2025

North America dominates this layer with 72 percent of global Distribution investment, followed by Oceania (18 percent), Europe (6 percent), and Asia (4 percent). While these shares are modest, they represent a distinct pivot toward dual-use capabilities. The US leads in GPS/GNSS and SatCom, China in global navigation satellite systems (GNSS), Europe in secure SatCom, and Australia in GEOINT distribution.


Table 3: VC funding in distribution

Company	Funding round	Amount	Year	Focus
Armada	Series B	US \$131 million	2025	Data-center infrastructure and spatial networking for satellite-based communications and GEOINT data distribution.
Genesis AI	Seed	US \$105 million	2025	Developing a universal robotics foundation model and physical AI for distributed spatial data processing.
Swift Navigation	Series E	US \$50 million	2025	High-precision cloud-based GPS positioning systems for autonomous and industrial applications.
Armada	Series A	US \$40 million	2023	Early-stage expansion of edge-compute systems enabling global data routing for satellite constellations.
Skyloom Global	Series B	US \$29 million	2023	Optical inter-satellite communication networks to accelerate high-capacity data relay across orbital layers.

Growth rounds and corporate syndicates increasingly back connectivity: AI convergence platforms such as Armada and Genesis AI, which bridge defense data routing and physical-AI processing. Armada's US\$131 million growth round marked a major milestone for edge-compute infrastructure, while Genesis AI's US\$105 million seed funding set a new record for physical-AI data systems. GPS funding has become increasingly concentrated, with new rounds peaking in 2017 and dropping to just four in 2025. GEOINT's momentum has accelerated since 2024, on track to exceed previous records by end-2025.

Layer 3 – Application

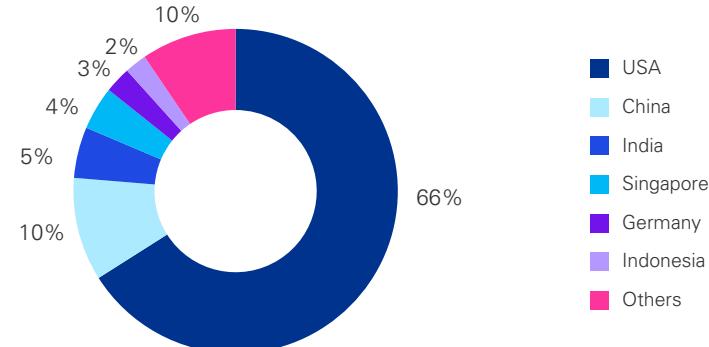

Investment in distribution remains smaller in absolute terms compared to Infrastructure and Applications, but it has become far more focused and strategically important. Funding rounds have grown in size, with 2024–2025 seeing concentrated capital flows into fewer, high-conviction companies. In Q3 2025 alone, US\$300 million was raised across eight deals, an indicator of investor preference for scale and defensible technology rather than breadth.

Figure 11: Global application investment 2021–2025

The applications layer has regained momentum since mid-2024, emerging as the most dynamic driver of value creation in the space economy. While venture capital still accounts for most deal volume, corporate and strategic investments now dominate funding size – especially in AI-enabled GEOINT and defense-linked analytics.

From 2021 to 2025, investment shifted decisively from consumer satellite services to dual-use AI and autonomy platforms. The 2021 SPAC wave and subsequent correction refocused investor attention on proven business models, data moats, and direct defense or enterprise integration. As a result, deal counts fell, but average ticket sizes rose sharply, reflecting confidence in scalable, contract-anchored firms.

Figure 12: Application investment per country 2023-2025

By 2025, the U.S. accounted for 66% of global application-layer investment, driven by defense integration, GEOINT, and mobility systems. China followed at around 10%, channeling state-backed funding into logistics and national-security applications.

India's 5 percent share highlights rapid growth in remote-sensing analytics and downstream data services under the commercialization of the India Space Research Organization (ISRO) and IN-SPACE reforms. Singapore (4 percent) and Germany (3 percent) serve as smaller but innovative hubs—Singapore in satellite IoT and fintech analytics, Germany in defense-linked autonomy and AI. Indonesia (2 percent) and others are beginning to apply space-based data in agriculture and maritime logistics.

Table 4: VC funding in application

Company	Funding round	Amount	Year	Focus
Scale AI	Strategic / Corporate (Meta investment)	US\$14.3 billion	2025	GEOINT AI – planetary-scale models for geospatial intelligence and physical AI.
Anduril Industries	Series F	US\$1.5 billion	2024	Defence-driven autonomy and sensor fusion leveraging satellite and spatial data.
Waymo	Series C (extension)	US\$2.5 billion	2021	Advanced mobility applications using satellite-enabled mapping and AI.
Figure AI	Series B	US\$675 million	2024	Robotics & AI leveraging space-sourced geospatial and environmental data.
Nuro	Series E	US\$203 million	2025	Autonomous-vehicle logistics using GPS and space-based navigation services.

The Scale AI–Meta deal worth US\$14.3 billion in 2025 exemplifies how data annotation and spatial-AI platforms have become critical digital infrastructure, linking orbital data to ground-level analytics. Similarly, Anduril's US\$1.5 billion raise underscores the deepening fusion of defense autonomy with satellite networks.

04

How are space investments contributing to national growth

The space sector is now a key component to deliver national growth goals. The global space economy has been growing at roughly 7–9 percent annually which is faster than world GDP, reaching about US\$613 billion in 2024.

Some of the dimensions that contribute to national growth are:

Economic diversification and growth

New high-tech industries

The space sector offers a path to develop advanced manufacturing, materials development, precision engineering and services. Several emerging economies are nurturing niche space startups. For example, venture backed private companies in India now provide launch services and remote-sensing solutions. Technologies developed for the space sector such as SAR and hyperspectral imaging solutions have extensive use in other commercial and military applications.

Contribution to GDP and trade

In 2024, space enterprises worldwide generated over US\$600 billion in revenue. Some governments even target a larger GDP share from space (e.g. the UK envisions 10 percent in coming decades). Lower launch costs (fallen around 10 times in the past 20 years) mean more countries and firms can deploy satellites, expanding the market for spacecraft, components, and data services.

Job creation and high-value employment

Major space programs have large multipliers. For instance, NASA's ~US\$25 billion budget in 2023 supported over 300,000 jobs in the US, with about US\$75.6 billion in total economic output. Similarly, Europe's space workforce grew far faster than average employment. These jobs not only offer salaries well above national but also spur demand for STEM education, building human capital.

Economic resilience and investment

Developing a domestic space sector makes an economy more innovative and less reliant on volatile commodity sectors. For example, Saudi Arabia's Vision 2030 earmarked US\$2 billion to grow a local space industry, aiming to reduce oil dependence. Such government backing attracts international partnerships and private capital; global investors poured record funds into space startups.

Defense and security

Space capabilities have become vital for national security and defense. Both military and civilian security operations gain strategic advantages from satellites in orbit.

Surveillance and intelligence

High-resolution imagery, radar scans, and signals intelligence enable militaries to track adversary movements, verify arms-control compliance, and detect threats in near real time. For example, Ukraine leased on-demand access to ICEYE for cloud-penetrating imagery to improve battlefield targeting. Recognizing this, many nations are deploying their own ISR satellites or ensuring access to allied/commercial data so they aren't "blind" in a crisis.

Secure communications and navigation

Military satcom networks allow encrypted command-and-control links across the globe, while satellite navigation (GPS and similar systems) enables precise targeting and coordination of forces. Space-based positioning, navigation, and

timing (PNT) has become so essential that a major GPS outage could cost over US\$1 billion per day in economic losses and cripple both civil and military functions. Governments are now developing redundancies, with defense programs fueling extensive R&D.

Early warning and missile defense

Satellites are deployed for tracking missile launches, detecting nuclear tests and tracking illicit activities like maritime piracy or smuggling. New defense-oriented constellations, anti-satellite (ASAT) defenses, and even dedicated space forces reflect how space is now a domain of strategic competition.

Sovereignty and independent access

Owning space infrastructure and development capability enhances national autonomy. Several countries are actively working towards decoupling from dependency traps.

Digital connectivity and inclusion

Space infrastructure plays a pivotal role in expanding digital connectivity, especially to remote or underserved regions.

Broadband for remote areas

Communication satellites are transformative for rural communities. For instance, Peru's "Internet para Todos" program uses satellites to bring broadband to thousands of villages in the Andes and Amazon, connecting schools and clinics that never had access before. Globally, there are still over 2.6 billion people offline (about one-third of humanity), mostly in developing and hard-to-reach areas. New satellite broadband networks (e.g. SpaceX Starlink, OneWeb) are rapidly extending coverage to these populations, integrating millions into e-commerce, e-banking, e-government, and the digital economy.

Resilient communication infrastructure

Satellites provide redundancy for national networks and act as lifelines during disasters or conflicts. Many countries now include satellite phones and

VSAT terminals in disaster preparedness plans to ensure continuity of communications. After major hurricanes, for example, relief agencies often deploy portable satellite internet kits within hours to enable coordination of aid. Satellites also commonly backhaul data for rural cell sites (connecting remote cell towers to the core network) in regions like Africa and parts of Asia.

Navigation and services integration

Space-based navigation systems (GPS, Galileo, etc.) are the invisible backbone of many digital services – powering rideshare apps, logistics tracking, precision agriculture, financial transaction timing, and more. The economic value of satellite navigation is enormous: the US GPS system alone has generated an estimated US\$1.4 trillion in economic benefits since the 1980s.

Innovation and R&D capacity

Cutting-edge technology development

Designing rockets, satellites, and crewed spacecraft forces engineers to innovate in areas from advanced materials and propulsion to robotics and AI. These extreme challenges drive solutions that often spin off into other sectors. NASA alone has documented over 2,000 spin-off technologies including satellite imaging sensors adapted for medical diagnostics, GPS-based precision survey tools for construction, and improved solar panels and batteries originally developed for spacecraft.

Innovation ecosystem and startups

A vibrant space sector tends to become a hub for startups, research institutions, and investors. Public support can crowd in private innovation. For example, NASA's funding of commercial launch providers helped new entrants like SpaceX, which then pioneered reusable rockets that dramatically lowered launch costs. The spillovers are significant: advancements in miniaturized electronics, networking, and remote sensing from space tech are quickly applied in fields like agriculture, transportation, and finance.

Advancing scientific research

Space investment boosts fundamental science in areas such as astronomy, earth science, materials science, and biology (e.g. experiments in microgravity). Government space programs often fund universities and labs to tackle cutting-edge questions, from improving climate models with satellite data to studying human health in space. This yields scientific publications, new intellectual property, and increases a country's scientific output and reputation.

Environmental sustainability and climate resilience

Earth observation for resource management

Governments use EO data to enforce environmental laws and measure progress on sustainability goals. For instance, Brazil employs satellite imaging to crack down on unauthorized Amazon rainforest clearing in near-real-time. In agriculture, satellite data enables precision farming – spotting crop drought stress, optimizing irrigation, and estimating yields. Such practices have been shown to boost crop yields by approx. 4 percent while cutting fertilizer and pesticide use by around 7–9 percent, and reducing water use by another 4 percent. Scaled up, these satellite-guided techniques could increase production by 6 percent with 14 percent less fertilizer and 21 percent less water, benefiting both food security and the environment.

Climate change monitoring and action

Satellites are indispensable in tracking climate change. They measure key indicators like greenhouse gas concentrations, global

temperatures, ice sheet thickness, and sea-level rise with objective global coverage. Missions like NASA's OCO-2/OCO-3 or Europe's upcoming CO2M allow governments to monitor national CO₂ and methane emissions from space, verifying progress on emissions-reduction pledges (adding transparency to the Paris Agreement process). Satellite data also aids climate adaptation: mapping flood plains and glacier melt, or giving early warning of drought and crop failures.

Disaster risk reduction and public safety

Space systems have revolutionized disaster management by improving forecasting, early warnings, and emergency response. Meteorological satellites track weather systems such as hurricanes, cyclones, monsoons, wildfires, and enable more accurate, timely forecasts. The result has been a dramatic drop in disaster mortality over recent decades. Thanks to space-powered early warning systems, annual climate-related deaths fell from about 50,000 in the 1970s to under 20,000 in the 2010s.

Human capital development (education and skills)

STEM education and inspiration

Ambitious space missions capture the public's imagination and motivate students to pursue science, technology, engineering, and math (STEM). The Apollo effect in the 1960s, when the moon landings triggered a surge in engineering enrollments in the US, is a classic example. Today, countries leverage space achievements in a similar way. For instance, the UAE's recent mars probe, Hope, was explicitly designed to inspire Emirati youth to study STEM fields. In the years following the UAE's high-profile space initiatives, domestic STEM enrollment reportedly rose by about 12 percent annually.

Workforce skill development

Building and operating space systems requires a highly skilled workforce such as aerospace engineers, software developers, data analysts, astrophysicists, etc. Thus, investing in space means investing in education and training programs to produce this talent. Over time, this raises the overall skill level of the national workforce in advanced technologies. For example, India's space agency (ISRO) helped cultivate a pool of world-class engineers through decades of indigenous rocket and satellite development, seeding the growth of India's broader IT and engineering sectors.

05 Measuring the success of space investments

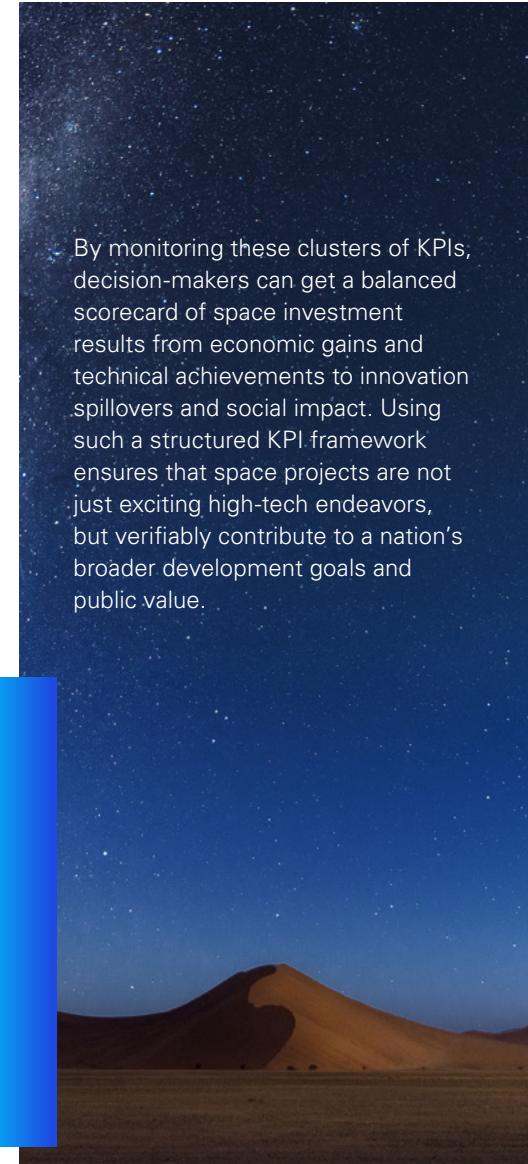
To ensure that space investments deliver the desired outcomes, policymakers and investors track a range of performance indicators. These metrics gauge success across economic, technical, innovation, and societal dimensions. A practical framework is to organize KPIs into four main clusters – economic impact, operational performance, innovation output, and public service delivery – each with specific indicators.

Economic impact

Measures the financial return and growth generated by space activities. This includes indicators like the space sector's contribution to GDP, number of jobs created, revenue from space exports, and amount of private investment attracted. For instance, tracking how much GDP percentage comes from space industries or how many high-value jobs a national space program supports reflects its economic benefit.

Innovation output

Evaluates the advancement of knowledge and technology stemming from space investments. This can be quantified by the number of new patents or technologies developed, count of spin-off companies or startups emerging from space R&D, research publications and breakthroughs, and international collaborations formed. A rise in space-related patents or successful space-tech startups would signal that the investment is spurring innovation beyond the immediate projects.


Operational performance

Assesses how well space infrastructure and missions are executed. Key metrics cover launch success rates, satellite reliability and uptime, coverage area of satellite services, and cost efficiency. For example, a high launch success percentage, minimal satellite downtime, and reductions in cost per launch or per data transmitted indicate effective and reliable space operations.

Public service delivery

Gauges the societal and environmental benefits provided by space applications. Indicators include the improvement in services like connectivity (e.g. population coverage by satellite internet), enhanced disaster response (e.g. reduction in emergency response times or lives saved due to early warnings), environmental monitoring capacity (e.g. number of environmental parameters tracked from space), and use of satellite data in government decision-making (such as crop monitoring or urban planning). These metrics show how space assets are improving everyday life and public sector outcomes.

About KPMG Middle East

KPMG Middle East LLP is a part of the KPMG global organization of independent member firms that operate in 143 countries and territories and are affiliated with KPMG International Limited. We provide audit, tax and advisory services to public and private sector clients across Saudi Arabia, United Arab Emirates, Jordan, Lebanon, Oman, and Iraq, contracting through separate legal entities. We have a strong legacy in the region, where we have been established for over 50 years. KPMG Middle East LLP is well-connected with its global member network and combines its local knowledge with international expertise.

KPMG serves the diverse needs of businesses, governments, public-sector agencies, not-for-profit organizations, and the capital markets.

Our commitment to quality and service excellence underpins everything we do. We strive to deliver to the highest standards for our stakeholders, building trust through our actions and behavior, both professionally and personally.

Our values guide our day-to-day behavior, informing how we act, the decisions we make, and how we work with each other, our clients, and all our stakeholders.

Integrity:

We do what is right

Excellence:

We never stop learning and improving

Courage:

We think and act boldly

Together:

We respect each other and draw strength from our differences

For Better:

We do what matters.

Our purpose is to inspire confidence and empower change. By inspiring confidence in our people, clients and society, we help empower the change needed to solve the toughest challenges and lead the way forward.

KPMG's Our Impact Plan guides our commitments to serving our clients, people and communities across four categories: Planet, People, Prosperity, and Governance. These four priority areas assist us in defining and managing our environmental, social, economic and governance impacts to create a more sustainable future. We aim to deliver growth with purpose. We unite the best of KPMG to help our clients fulfil their purpose and deliver against the United Nations Sustainable Development Goals, so all our communities can thrive and prosper.

We are dedicated to delivering growth with purpose, helping our clients achieve their goals, and advancing sustainable progress to ensure that all our communities thrive. Empowered by our values, and committed to our purpose, our people are our greatest strength. Together, we are building a values-led organization of the future. For better.

References

Global space economy and public budgets

- Space Foundation — The Space Report 2025 (global space economy \$613B for 2024). <https://www.spacefoundation.org/2025/07/22/the-space-report-2025-q2/>
- European Space Agency — Report on the Space Economy 2025 (annual ESA compendium). <https://space-economy.esa.int/article/287/esa-report-on-the-space-economy-2025>
- OECD — The Space Economy in Figures (overview & measurement notes). https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/12/the-space-economy-in-figures_4c52ae39/fa5494aa-en.pdf

Space investment data and market commentary

- Space Capital — Space Investment Quarterly / Space IQ portal (Q3 2025 and earlier reports & podcasts). <https://www.spacecapital.com/space-iq>
- Space Capital — Reports & GEOINT Playbook (thematic playbooks and podcasts). <https://www.spacecapital.com/reports>
- Space Capital Podcast — Space IQ episodes (quarterly breakdowns). <https://www.spacecapital.com/podcast>

Infrastructure deals (examples cited in Layer 1)

- SpaceX — raised about \$1.16B in equity financing (Apr 2021). Reuters coverage: <https://www.reuters.com/technology/spacex-raises-116-bln-equity-financing-2021-04-14/>
- Relativity Space — \$650M Series E (Jun 2021) press release. <https://www.relativityspace.com/press-release/2021/6/08/relativity-space-fundraise-series-e>

- Astranis — \$200M Series D (Jun/Jul 2024) press release and TechCrunch coverage. <https://www.astranis.com/blog/astranis-raises-200-million-series-d-fully-funding-omega-development-program-c2dea> and <https://techcrunch.com/2024/07/24/astranis-is-set-to-build-omega-constellation-after-200m-series-d/>
- Varda Space Industries — \$90M Series B (Apr 2024) (PR / Reuters). <https://www.prnewswire.com/news-releases/varda-announces-90-million-series-b-funding-to-build-factories-in-space-302108949.html> and <https://www.reuters.com/technology/space/varda-raises-90-mln-fuel-space-manufacturing-efforts-2024-04-05/>
- Impulse Space — \$300M Series C (Jun 2025) (company announcement and press). <https://www.impulsespace.com/updates/impulse-space-secures-300-million-dollar-series-c-to-accelerate-the-future-of-in-space-mobility> and Axios summary: <https://wwwaxios.com/2025/06/04/impulse-space-spacex-300-million>

Distribution and applications deals (examples cited in Layer 2 & 3)

- Swift Navigation — Series E <https://www.swiftnavigation.com/news>
- Armada — Leviathan funding [Armada Announces \\$131M Strategic Funding Round, Launch of Megawatt-Scale Modular AI Data Centers to Accelerate American Energy and AI Dominance](https://www.armada.com/2023/01/13/armada-announces-131m-strategic-funding-round-launch-of-megawatt-scale-modular-ai-data-centers-to-accelerate-american-energy-and-ai-dominance)
- Scale AI — Meta acquisition [Meta Invests \\$14 Billion In Scale AI To Strengthen Model Training](https://www.scaleai.com/meta-invests-14-billion-in-scale-ai-to-strengthen-model-training)
- Waymo — Series C Funding Investing to bring the [Waymo Driver to more riders](https://www.waymo.com/waymo-driver-to-more-riders)

Defense programs, missile warning and OPIR

- Next-Gen OPIR / SBIRS coverage — Northrop Grumman / Lockheed Martin press on Next-Gen OPIR and SBIRS context: <https://news.lockheedmartin.com/2025-08-06-first-next-gen-geo-based-missile-warning-satellite-successfully-completes-environmental-testing> and <https://www.northropgrumman.com/what-we-do/missile-defense/missile-warning-and-tracking>
- Golden Dome context and analysis — Breaking Defense / Arms Control commentary: <https://breakingdefense.com/2025/06/nine-steps-to-make-golden-dome-a-true-success> and <https://www.armscontrol.org/act/2025-06/features/dome-delusion-many-costs-ballistic-missile-defense>
- US Space Force OPIR ground & mission updates: <https://www.ssc.spaceforce.mil/Newsroom/Article/4175204/ussf-strengthens-missile-warning-mission-with-forge-enterprise-opir-solution-ef>

ISR/GEOINT examples (ICEYE & Ukraine)

- ICEYE press releases and coverage of access for Ukraine (leasing / dedicated satellite). <https://www.iceye.com/newsroom/press-releases/iceye-signs-contract-to-provide-government-of-ukraine-with-access-to-its-sar-satellite-constellation> and <https://spacewatchafrica.com/ukraine-leases-sar-satellite-and-access-to-iceye-satellite-constellation/>
- GEOINT Symposium / USGIF coverage (event-level context). <https://usgif.org/geoint-foreword-2025-recap/>

Digital connectivity, inclusion and case studies

- Internet Para Todos (Peru) — program overview and

results. <https://www.ipt.pe/en/> and World Bank/IDB project pages (IPT project summaries). <https://www.idbinvest.org/es/download/12465>

- Starlink / OneWeb coverage and D2D trials. Example Omdia Peru note: <https://omdia.tech.informa.com/om136034/peru-country-regulation-overview-2025>

Environmental monitoring and deforestation (case studies)

- INPE / PRODES / DETER monitoring (Brazil). INPE Amazon mission pages: https://www.inpe.br/amazonia1/en/uses_applications.php and background research on PRODES/DETER: <https://www.climatepolicyinitiative.org/wp-content/uploads/2019/11/Assuncao-Gandour-Rocha-WP2019-DETERring-Deforestation-in-the-Amazon-1.pdf>
- NASA OCO-2 / OCO-3 mission pages and CO2 monitoring context: <https://science.nasa.gov/missions/oco-2> and ESA CO2M mission overview: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/CO2M

Innovation, spin-offs and human capital

- NASA Spinoff highlights (archive of spin-offs). <https://spinoff.nasa.gov/>
- Examples of national ISRO impact and capacity-building (ISRO overview and publications). <https://www.isro.gov.in/>

Contact us

Chris Moore
Partner
Head of Defense and Security
KPMG Middle East

John-Patrick Walthuis
Director
Director, Defense and Security
KPMG Middle East

Arjun Sreekumar
Associate Director
Defense, Space and Aerospace
KPMG Middle East

Follow us on:

The information contained herein is of a general nature and is not intended to address the circumstances of any particular individual or entity. Although we endeavor to provide accurate and timely information, there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future. No one should act on such information without appropriate professional advice after a thorough examination of the particular situation.

© 2025 KPMG Middle East LLP, a Jersey limited liability partnership, and a member firm of the KPMG global organization of independent member firms affiliated with KPMG International Limited, a private English company limited by guarantee.

The KPMG name and logo are registered trademarks or trademarks of KPMG International.

Designed by KPMG ME Design Studio

Publication name: The new high ground

Publication number: 5733

Publication date: November 2025